Left Ventricular Assist Devices (LVADs): Overview and Future Directions

FATIMA KARAKI, M.D.
PGY-3, DEPARTMENT OF MEDICINE
WASHINGTON UNIVERSITY IN ST. LOUIS
ST. LOUIS, MISSOURI, USA
St. Louis, Missouri, USA
Medical Technology in the U.S.

- Largest producer and consumer of medical technology worldwide: 40% of the global market
 - American healthcare is expensive: 17% of the GDP

- $100 billion market in 2010; $38 billion in exports
 - Electromedical (pacemakers, MRI, ultrasound)
 - Radiation (CT, diagnostic imaging)
 - Surgical supplies (orthopedic joints, stents)

- Investment in medical device R&D doubled in the 1990s

- Focus on: Medical Technology therapies in Heart Failure
 - Ventricular Assist Devices (VADs)
Definition and Epidemiology of Heart Failure

- Systemic perfusion inadequate to meet the body’s metabolic demands due to **impaired cardiac function**

- Most common cause is **left ventricular (LV) dysfunction**
 - Coronary artery disease / Ischemic cardiomyopathy
 - Dilated cardiomyopathy
 - Valvular heart disease
 - Hypertensive heart disease

- 5.8 million Americans in 2006 (2% of the U.S. population)
 - 550,000 new cases diagnosed annually
 - 23 million individuals worldwide (est.)

- Over time → decreased quality of life and more frequent admissions
 - One million hospital admissions and $28 billion annually

- Cardiac transplant: well-accepted treatment for end-stage heart failure
 - Severe organ shortage
Normal Anatomy Review
Pathophysiology of Heart Failure

LV’s pumping function is ineffective.
Heart Failure Signs and Symptoms

- As the stage of heart failure progresses (I → IV), mortality increases

- Treatment options for end-stage heart failure are limited

- The significant morbidity and mortality of heart failure led to exploration of mechanical cardiac support devices for end-stage heart failure
History of Mechanical Cardiac Support

- **1950**: Cardiopulmonary Bypass
- **1960**: Intra-aortic Balloon Pump
- **1970**: Extracorporeal Membrane Oxygenation
- **1980**: Pulsatile VADs: 1st generation
- **1990**: Continuous Flow VADs: 2nd generation
- **2000**: Electromagnetic VADs: 3rd generation; Total artificial hearts
- **2010**: FDA approval: destination therapy
- **2020**: FDA approval: bridge to transplantation

Ventricular Assist Devices (VADs)

- A **mechanical** circulatory device used to partially or completely replace cardiac function
- Mechanical support and ventricular unloading enables:
 - Hemodynamic stabilization
 - Organ recovery (reverse remodeling, normalization of chamber geometry)
 - Improved contractile performance
- May replace the right, left, or both ventricles
 - Left ventricular assist device (LVAD) most common
- Most commonly used in **end-stage heart failure**
- More than 4000 **HeartMate II** implanted since 2008
 - 1700 devices per year in the U.S.
 - 430 per year in Europe
Figure 1
The Heart Mate II left ventricular assist device (reprinted with permission from Thoratec corporation). A: Housing with vascular prosthesis to the ascending aorta. B: The impeller which is located within the housing. (© With courtesy by Thoratec Corporation).
LVAD Function

- Inflow cannula connected to LV apex
- Outflow cannula connected to aorta
- Intracorporeal pump with continuous axial flow rests below diaphragm
- Device mechanically pumps blood
- Up to 15,000 rotations/min = 8-10L/min blood flow
Surgical Implantation

Figure 2:
A: Fixation of the sewing ring for further insertion of the device within the left ventricular apex. B: Device in situ (intrapericardial).
Patient Selection

- Bridge to **cardiac transplant**
 - Most frequent indication worldwide

- Bridge to **recovery**
 - Mechanical support during reverse remodeling
 - Acute MI, graft failure, postpartum cardiomyopathy

- **Destination therapy**
 - Not a transplant candidate (age, comorbidities, noncompliance)
 - USA, Canada, Germany, Austria

- Bridge to **decision** (short-term LVAD)
 - Emergency cardiogenic shock (Acute MI, fulminant myocarditis)
 - Immediate stabilization for days-weeks during further evaluation

- Candidates must:
 - Be on **maximal inotropic support** +/- intraaortic balloon pump (**IABP**) AND
 - Systolic BP < 80 AND Cardiac index < 2.0 OR PCWP > 20
 - No irreversible secondary end-organ damage
Complications

- **Infection**: 28% at 3 mo
 - Especially of driveline and pocket; Fatal sepsis in 25%
- **Bleeding**: 42% at 6 mo
 - Perioperative
 - Postoperative anticoagulation: target INR 2.5-3.5
- **Stroke and peripheral thromboembolism**
 - Incidence lower with newer devices
- **RV failure**
 - RV function must be optimized prior to implantation
 - May require postoperative vasopressors
- **Arrhythmia**
 - Monomorph VT
- **Hemolysis**
 - Acquired von Willebrand syndrome
- **Device failure**: 0 at 1 yr; 35% at 2 yr
- Complications limit the ability of the technology to provide indefinite support
REMATCH Trial: NEJM 2001

- 129 patients assigned to LVAD vs optimal medical therapy
- Survival 52 vs 25% at 1 yr; 23 vs 8% at 2 yr = 48% reduction in mortality
- Significantly improved quality of life at one year
HeartMate II: Bridge to Therapy

- One study of 133 patients receiving HeartMate II demonstrated:
 - Primary outcome of cardiac recovery, cardiac transplant, or survival occurred in 75%
 - 68% survival at one year
 - Significant improvements in NYHA functional class, 6 minute walk, and quality of life at 3 mo
LVAD: Long-Term Outcomes

- Medicare database analysis of 1476 LVAD recipients
- 55% were discharged alive
- Of these,
 - 56% readmitted within 6 months
 - 21% underwent heart transplant at one year
- Overall one-year survival 52%
- Mean Medicare payment $178,714 for one year
- INTERMACS study showed survival 56% at one year
The Growing LVAD Market

- In the US, 50-60,000 patients annually could benefit from heart transplant
 - 1,897 transplants performed in 2003
 - LVADs designed to fill the gap
- Market analysis estimates 54,000 annual LVAD candidates in the developed world
 - US: 20,000 destination therapy, 1,500 bridge to transplant
 - Similar rates estimated in Europe
- Rates expected to increase as more patients are placed on transplant list and eligibility criteria increase in flexibility
INTERMACS: June 2006–June 2010
Adult primary LVAD enrollment: n = 2325

- Pulsatile intracorporeal pump
- Pulsatile paracorporeal pump
- Continuous-flow intracorporeal pump

Implants per 6 months:
- 2006 Jul–Dec: <100
- 2007 Jan–Jun: <100
- 2007 Jul–Dec: <100
- 2008 Jan–Jun: <100
- 2008 Jul–Dec: <100
- 2009 Jan–Jun: <100
- 2009 Jul–Dec: <100
- 2010 Jan–Jun: >600
LVAD in Japan

- 113 patients underwent cardiac transplant 1999-2011
 - Longest waiting period of all available countries, > 2.5 years
 - Law change regarding brain death in 2010; 30 transplants in 2010
- 90% of transplant candidates require LVAD
 - Mean wait time 877 days
 - Internationally, 27% require LVAD with 50 day wait time
- Japan Social Reimbursement System approved Nipro LVAD (1st gen)
 - In 2011, approved Evaheart and Duraheart (2nd gen.)
 - More common LVADs anticipated approval soon
Financial Considerations

- Extensive debate regarding high LVAD costs versus potential benefits in US healthcare politics
- Cost estimates vary
 - Initial hospitalization costs $200,000
 - Fully functional HeartMate XVE costs $100,000
 - Outpatient costs after discharge $13,200
- Quality-adjusted life year (QALY)
 - Initial estimates $800,000 per QALY
 - More recent analyses estimate $100,000-150,000 per QALY
- Assumption that costs will fall over time as technology becomes more widespread
Future Directions

- **Jarvik 2000**: axial flow, continuous flow impeller pump
- Transcutaneous Energy Transfer System (TETS)
 - Avoid driveline infections
- Electromagnetic (centrifugal) continuous flow pump
 - 3rd generation LVAD
 - Magnetically levitated, more efficient, long lifespan
- **Total artificial heart**
 - Abiomed TAH currently undergoing clinical trials
Jarvik 2000

- Totally implantable, silent, unobtrusive
- Encapsulated within myocardium
- Decreased risk of infection and hemolysis
- Power cable to RUQ or base of skull
- Trial underway to compare to medical therapy
The first clinical case in Japan of destination therapy using the Jarvik 2000 left ventricular assist device

Sokichi Kamata · Taichi Sakaguchi · Shigeru Miyagawa · Yasushi Yoshikawa · Takashi Yamauchi · Koji Takeda · Shunsuke Saito · Takayoshi Ueno · Toru Kuratani · Yoshiki Sawa

Received: 7 May 2010/ Accepted: 27 July 2010/ Published online: 12 August 2010
© The Japanese Society for Artificial Organs 2010
Abiomed Total Artificial Heart

- Patient’s heart totally excised
- RV + LV replacement
- Device entirely within mediastinum
- Energy from low viscosity oil
- Wire in abdomen provides connection for transcutaneous energy transfer
- Currently under clinical trials
Questions?
References